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ABSTRACT 

This article reviews recent advances in the thermodynamics of (dilute) non-electrolyte 
solutions. The focus is on high-precision experimental techniques. Some of the problems 
encountered in data reduction and data correlation are discussed. 

“Der einzige sichere Ftihrer auf dem Weg der weiteren En&vi&lung bleibt stets die 
Messung . . . ” 
Max Planck (1926) Physikalische Gesetzlichkeit. 

INTRODUCTION 

The large number of articles containing experimental data on thermody- 
namic properties of pure fluids and fluid mixtures, as well as new experi- 
mental techniques and the concurrent significant advances in theory, dem- 
onstrate the unabated, rapid growth of this field [l-21]. Given the variety of 
topics and the unavoidable limits imposed by a conference presentation, this 
review cannot be exhaustive. In fact, it is very limited in scope, being 
focussed essentially on only two topics, both of which reflect to a large 
extent the author’s current research interests: dilute solutions of non-electro- 
lytes and liquid mixtures containing a strongly polar component. The author 
apologises for the omission of many other equally important and active 
areas. 

THE THERMODYNAMICS OF SOLUTIONS, ESPECIALLY DILUTE SOLUTIONS 

Current interest in solution thermodynamics is closely linked to: (a) 
advances in the theory of liquids in general; (b) advances in the design of 

* Presented as a plenary lecture at the 10th Convegno Nazionale della Associazione Italiana 
di Calorimetria e Analisi Termica (AICAT), Pisa, Italy, 11-14 December 1988. 
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measuring equipment; and (c) important practical applications in surpris- 
ingly diverse areas. In theory, solution properties may be accounted for in 
terms of solvent-solvent, solvent-solute and solute-solute interactions. Ex- 
perimentally, this separation corresponds to the study of the pure compo- 
nents, and to the determination of any given quantity from the high-dilution 
region to the composition of interest. At high dilution, solute-solute effects 
are essentially absent. Thus, the infinite dilution limit allows the testing of 
theories tailored for the description of solvation effects, whereas finite 
concentration properties supply information relevant to the discussion of 
solute-solute interaction due to pairs, triplets, and so forth. When aqueous 
solutions of non-electrolytes are involved, the terms hydrophobic hydration 
and hydrophobic interaction are in general use [22,23]. As far as practical 
applications are concerned, data on dilute solutions are frequently needed in 
biomedical technology, environmental pollution control, geochemistry and 
chemical process design. The last of these fields includes such important 
areas as coal gasification, enhanced oil recovery, natural-gas and synthetic- 
gas purification (gas sweetening), custody transfer of chemicals, such as 
slightly impure carbon dioxide or ethylene (which takes place at conditions 
near the respective critical points), sludge oxidation, waste water treatment 
and so forth. The properties of dilute solutions, with emphasis on interdisci- 
plinary aspects, will undoubtedly continue to attract pure and applied 
research for many years to come. 

What then are the quantities of interest to be determined by experiment, 
i.e. by vapour-liquid equilibrium (VLE) measurements, calorimetry and 
densimetry/dilatometry? A vapour-liquid equilibrium is characterised by 
the equality of the component fugacities in both phases. For a binary 
solution, to which we shall now confine our attention, 

fi”(T, p, Yi) =fiL(C p, xi) i=l,2 (1) 

Two entirely equivalent formal procedures are commonly used to establish 
the link with experiment: the ($, C#B) method and the ( $I, y) method. The 
decision as to which approach should be preferred for solving actual 
problems, though by and large a matter of taste, is subject to important 
practical constraints [2,9,11,13,15,16]. High-pressure vapour-liquid equi- 
libria are conveniently treated in terms of the (+, +) approach, because the 
use of a single equation of state (EOS) valid for both phases has some 
computational advantage. At low to moderate pressures, thermodynamic 
analysis (data reduction and VLE calculations) is preferably based upon the 
($, y) formalism. Here, an EOS is required for the low-density vapour phase 
only, whereas for the liquid phase, a suitable activity coefficient model is 
introduced. 

When adopting the ($, y) method, in particular when dealing with a 
supercritical solute 2, determination of the Henry fugacity H2,i( T, Ps,l) is of 
central importance. This quantity is rigorously accessible from isothermal 
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(2) 

or equivalently by 

S,,(C 4,,> = (d&d&=, = @(T, P,,,)P,,,(dy,/dx,)xz=~ (3) 

At the same temperature and at the vapour pressure P,,i of the solvent 1, the 
corresponding liquid-phase constant-pressure activity coefficients (unsym- 
metric convention), y; -f,“/x,H,,,, are then obtained via 

This sequential approach is most frequently used in data reduction. It 
simply reflects the focussing of interest on the solute in a composition range 
very close to the pure solvent. Relations to quantities based on the symmet- 
ric convention, that is on the Lewis-Randall rule, are readily established 
[9,11,16,19,20]. For example, at constant temperature and pressure, the 
activity coefficient yz = f,“/x, fzL* is related to y; through 

Y2 = YlYF (5) 

Y2” = H2,1/f2L* (6) 

and the corresponding excess molar Gibbs energies obey 

(GE - GE’)/RT = x2 In y? (7) 

The ideal-solution models based on Henry’s Law and on the Lewis-Randall 
rule are illustrated in Fig. 1. 

constant (T.P) 

I 

,’ 
,’ 

,’ 
/’ 

I 

,’ / 
+“,,’ , 
8’ ,*’ 

I 

,’ ,I 

, 

/ 

I 

, ,’ 
,’ 

$’ 

,’ 

<I’ 
,’ 

,’ 

x2 - 

H2,l 

1: 

~2,_~~~o~=($)'2'0 (HL) 

1; :(,m -= 32 '2 
r2-1 '2 () #a2 "2i, (LR) 

Fig. 1. Composition dependence of component fugacity fi in a binary solution at constant T 
and P. f2* is the fugacity of pure component 2 and I!& is the Henry fugacity. The dashed 
lines represent the Lewis-Randall rule (LR) and Henry’s Law (HL), respectively. 
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For a supercritical solute, there is no experimental value for the pure-sub- 
stance liquid-state fugacity, fzL*. One may, however, obtain the fugacity in a 
pure hypothetical liquid (h.1.) state through essentially arbitrary processes, 
each giving a different set of symmetrically normalised activity coefficients 
that satisfy, of course, the defining relation 

yJ$(h.‘.)* = f,“/$ (8) 

While perhaps not particularly attractive from the fundamental point of 
view of molecular theory, the latter approach has had some fair success in 
practical applications. 

The connection with the EOS formalism is illustrated by the following 
eminently useful relations [9,11,16,19,20]. From the general definition of the 
fugacity coefficient of component i in, say, a liquid solution 

&CC p, x2) =f>(T, p, x,)/Q (9) 

and the defining relation, eqn. (2), the rigorous expression 

&” = XhmO&(C p, x2) = &,,(C p)/p 00) 
2 

is obtained. In addition 

Y2 = &/&” (11) 

Yz’ = &/&” (12) 

and 

Y2" =Y2/Y;=&"/&* (13) 

Vapour-liquid equilibria at elevated pressures are often discussed in terms 
of K values defined by 

Ki = J/xi 

which may thus be expressed as 

K, = +-/Cp; = yifiL*/cp;P 

Fugacity coefficients may be calculated from any suitable EOS. If 
sure-explicit EOS is used, at constant temperature and composition 

04 

(15) 
(16) 

a pres- 

(17) 

where p = v/- ’ is the molar density of the mixture. 
Both the temperature and pressure dependences of the quantities intro- 

duced above are readily calculated [2,9-11,16,19,20]. For example, for the 
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Henry fugacity 

(Cl In H2,1/8T)P= -AHT/RT2 

(a In H2,J8P) T = Vk”/RT 

(18) 

09 

and 

(a A H,“/aT), = AC,q; (20) 
Equations (18) and (20) form the basis for comparison of calorimetrically 
determined enthalpy and heat capacity changes on solution with results 
obtained from van’t Hoff analysis of high-precision VLE data of dilute 
solutions. A few selected recent experimental contributions to this field will 
be presented, in the briefest of terms, in the next section. 

The effect of pressure on the Henry fugacity is rigorously given by eqn. 
(19). However, simplistic application, in the form of the Krichevsky- 
Kasarnovsky equation, for the extraction of infinite-dilution partial molar 
volumes, V2Lw, from high-pressure gas-solubility data may yield unreliable 
results [2,11,13,24,25]. In such systems, the Poynting correction and the 
‘composition effect’ embodied in the activity coefficient frequently cancel 
each other to a significant extent [26,27]. The preferred experimental method 
for determining V2L” (and V,“) is either dilatometry [28,29] or densimetry 
[30-321 at very small mole fractions. 

EXPERIMENTAL: DILUTE SOLUTIONS 

During the last decade, advances in the design of measuring equipment, 
primarily dedicated to dilute solutions, have been quite impressive. Several 
specialised reviews devoted to VLE, PUT measurements and calorimetry 
have been published (see the Introduction). In this section, only a few 
representative apparatuses and some corresponding problems encountered 
in data reduction and presentation will be discussed. 

Synthetic as well as analytical methods have been reported for VLE 
measurements. With adequate design and proper handling, both techniques 
are capable of yielding precise data. The synthetic method is illustrated by 
the automated instruments constructed by Tucker et al. [33,34] and Tominaga 
et al. [35]. An analytical method for VLE measurements on highly dilute 
solutions of gases in liquids has been developed by Rettich, Battino and 
Wilhelm (RBW) [36-381. It is based on the earlier work of Benson et al. 
[39,40]. Vapour-phase and liquid-phase equilibrium compositions are de- 
termined via classical PUT measurements, and Henry fugacities H2,1( T, Ps,l) 
are obtained according to the rigorous prescription in eqn. (2). The essential 
parts of the apparatus are shown in the flow diagram in Fig. 2. The 
imprecision of the RBW technique is usually about f0.05%. The method is 
thus superior to any other used for gas solubilities. 
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Fig. 2. Block diagram of the experimental 
gas-solubility apparatus [36-381. 

arrangement used in the RBW high-precision 

The practical implementation of the thermodynamically rigorous relations 
in eqns. (2) (3) and (4) hinges on the availability of some auxiliary 
information. Specifically, a vapour-phase EOS is needed for the evaluation 
of the fugacity coefficients (frequently, the virial equation of state is con- 
venient), and V,“(T, P, x2) at high dilution is needed to account for the 
influence of pressure on the liquid-phase fugacity. If no experimental results 
are available, one has to rely upon semi-empirical estimation methods, such 
as the Tsonopoulos correlation for the second virial coefficients [41], and 
scaled-particle theory [42] or the Handa-Benson method [43] for the partial 
molar volume of solute at infinite dilution. 

Once experimental Henry fugacities for a given solute-solvent system are 
collected over a certain temperature range, the question arises as to their 
most satisfactory mathematical representation as a function of temperature 
(Fig. 3). In the absence of theoretically well-founded models of general 
validity, essentially empirical relations are used [36-40,44-471, subject, 
however, to some important thermodynamic constraints. Whatever represen- 
tation is selected, any wide temperature-range correlation for H2,1(T, Ps,l) 
extending up to the critical region must incorporate the correct limiting 
behaviour as T + T,,, and Ps,l + Pc,l. First 

which follows immediately [16] from eqn. (10). Somewhat less direct deriva- 
tions may be found in refs. 9, 11, 48 and 49. For the limiting slope, Schotte 
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Fig. 3. Plot of ln[ H,,,( T, P,,,)/GPa] against temperature T for methane dissolved in water: 0, 
Rettich et al. [36] (percentage deviation is about f 0.05%); o, Crovetto et al. [44] (percentage 
deviation is between 1 and 2%). 

[50] has shown that provided the solute is the more volatile component, as in 
the case of methane dissolved in water 

=tF,, [d ln K,,(T &,,)/dT] = - 00 (22) 

Such behaviour has been predicted by Wheeler [51] and by non-classical 
critical point scaling [15,52]. The partial molar heat capacity at infinite 
dilution diverges, as expected, towards positive infinity [53,54]. That is to say 

(23) lim AC,q; = + cc 
=+ T,., 
p+p,.1 

as the critical point of the solvent is approached from lower temperatures 
(Fig. 4). When T,,, is approached from higher temperatures, CPg; tends 
towards negative infinity. This remarkable behaviour is demonstrated in the 
recent careful calorimetric study by Biggerstaff and Wood [54] of aqueous 
solutions of argon, xenon and ethene at temperatures up to 720 K and 
pressures up to 33 MPa. 

To date, the most popular empirical correlation schemes are those 
elaborated by Clarke and Glew [45] and by Benson et al. [39,40]. Their 
respective merits have been discussed repeatedly. Evidently, simple linearisa- 
tion methods, such as the one suggested by Jonah [55], are of only very 
limited utility. 

When a comparison between, say, enthalpy changes on the basis of eqn. 
(18) (van ‘t Hoff approach) and direct calorimetric measurements is desired, 
the fitting equation representing the temperature dependence of the Henry 
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Fig. 4. Temperature dependence of the heat capacity change AC,“P,/R for argon dissolved in 
water at about 17 MPa total pressure [53]. 

fugacity has to be judiciously selected. The H2,i( T, P,,J values at different 
temperatures refer, of course, to different pressures, P,,r( T), whence the 
partial molar enthalpy change on solution is rigorously given by 

(24) 

Equation (24) has been introduced by us [11,36-381 to obtain accurate AH,” 
values from high-precision gas solubility measurements. Analogous relations 
are readily derived [ll] for ACPyz. For several gases dissolved in water, AH? 
and ACPyz values obtained from VLE experiments using the RBW apparatus 
have recently been shown to agree excellently with calorimetrically de- 
termined values [16,53,56-591. 

This section is concluded with a few comments concerning the analytical 
representation of composition and temperature dependence of unsymmetri- 
cally normalised activity coefficients obtained through application of eqn. 
(4). For each temperature and reference pressure P,,,(T), the composition 
dependence of y; can be described by any convenient correlating equation 
compatible with the number and precision of the experimental data. In 
general, modelling closely follows the established procedures for the sym- 
metrically normalised activity coefficients. For instance, from the simplest 
non-trivial expression for the excess molar Gibbs energy, the one-parameter 
equation 

ln Y~(T, P,,l, x2) = ACT, P,,,>(x: - 1) (25) 

is obtained. Whenever a multi-parameter correlation is indicated, Wohl-type 
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equations have a special appeal. The temperature dependence of the fit 
parameters, say A(T, PJ, is usually accounted for by correlations resem- 
bling those used for the Henry fugacity. Excess partial molar enthalpies and 
heat capacities may then be obtained by appropriate differentiation [19]. 

EXPERIMENTAL: MIXTURES CONTAINING A STRONGLY POLAR COMPONENT 

Mixtures of practical interest for the chemist or chemical engineer are 
usually complex mixtures, that is to say the intermolecular potential energy 
functions characterising the various components differ strongly, thereby 
giving rise to pronounced thermodynamic non-ideality. These differences 
may be advantageously discussed in terms of differences in molecular size, 
shape anisotropy, dispersion forces, polarity, polarizability, flexibility, etc. 
[lo] (Fig. 5). In many mixtures dipolar and quadrupolar interactions contrib- 
ute significantly to orientational effects. These effects are intimately linked 
to molecular structure, and thus show a very diverse picture. Complex 
cooperative phenomena are frequently involved. 

In order to study the orientational effects due to polar-polar interaction, 
considerable time and effort have been devoted to the systematic experimen- 
tal determination of excess enthalpies, excess volumes, excess heat capacities 
at constant pressure, and the higher-order mixing quantities of binary liquid 
mixtures containing a strongly polar substance and an essentially non-polar 
hydrocarbon. Reports documenting the advances achieved have been pre- 
sented at several AFCAT meetings [60]. 

Fig. 5. Some important aspects of the description of fluids on the molecular and bulk level. 
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For the purpose of characterising the effective polarity of a molecule, one 
may define a reduced dipole moment according to [l] 

ji2 = p/(47rqp3~) (26) 

or equivalently, by virtue of the corresponding states principle, by either of 
the following expressions 

p2 = $2N*/(4~Ql&T,) (27) 

p2 = j?PJ(4.l&T,2) (28) 

As long as the temperature is sufficiently high, that is to say as long as 

jZ2N,/(4+%,T) -=K 1 (29) 

the orientation effects are essentially swamped by thermal randomisation. 
When the temperature is lowered, preferred orientations of considerable 
stability are observed. One way of treating these effects is through applica- 
tion of Guggenheim’s quasi-chemical theory [61], as recently suggested by 
Saint-Victor and Patterson [62]. In this approach, the excess molar enthalpy 
is separated into random (r) and non-random (nr) contributions 

HE/N, = H,E/N, + Hz/N, 

= x1x2( w - T dw/dT) - (x~x~)~( w - T dw/dT)(e2w/zksr - 1) 

+ . . . 

where w = a + b/T is the interchange 
excess molar heat capacity at constant 

C;/R = C.,/R + C: ,,/R 

(30) 
free energy parameter. Thus, for the 
pressure, the rough approximations 

T d2w 
= 

-X1X2kg dT2 - + (x1x212 
e2w/‘rkeT 

T d2w 
+GdT2 -(e Zw/rksr _ I ) +*** 1 PW 

= -2x,x2b/k,T2 + 2z-‘( HE,‘RT)’ @lb) 

are obtained. The random term in CpE is negative, as expected for mixtures 
where dipole-dipole order is being broken in the mixing process. On the 
other hand, the non-random contribution is positive and has zero slope 
against mole fraction at the ends of the composition range, see eqn. (31a). 
Both terms increase in magnitude with decreasing temperature. They can 
account qualitatively for the appearance of W-shaped CpE curves. Such 
‘unusual’ composition dependence, first reported by Grolier et al. in 1982 at 
the 37th Annual Calorimetry Conference [63], is now recognized as being of 
wide occurrence in mixtures of the type: a strongly polar substance + an 
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Fig. 6. Excess molar heat capacities C,” of { x,C,H,N+ .x~~-C,H~,+~) at 298.15 K and 
atmospheric pressure [~OC]. 

alkane. Representative examples are given in Fig. 6; additional mixtures 
showing W-shaped curves for C,” against x have been investigated in refs. 
60a-c and 62-68. Many of these systems are rather close to phase sep- 
aration at an upper critical solution temperature (UCST). 

When a UCST is approached from the homogeneous region at constant 
pressure and at constant critical composition, the heat capacity diverges 
weakly according to [l] 

c 
P.Xc 

= cl:-critical + Act_a, t=(T- T,)/T, (32) 

with a critical exponent a = 0.11. Evidently, the quasi-chemical approxima- 
tion severely underestimates the non-random contribution to C,,’ and be- 
comes, in fact, qualitatively incorrect for T + T,. 
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Any detailed discussion of W-shaped, or nearly W-shaped, heat capaci- 
ties, C,“, must first focus on obtaining the normal, non-critical contribution 
to the heat capacity in the spirit of eqn. (32). Although not difficult in 
principle, this separation nonetheless necessitates the acquisition of a sub- 
stantial number of experimental calorimetric results over a temperature 
range close to the UCST and over the entire composition range, 0 I x I 1. 
The recent work of Kalali et al. [68] on bis(Zdichloroethyl)ether + 2,2,4- 
trimethylpentane is a step in this direction. Because the isobaric expansivity 
diverges with the same critical exponent as T + T, at x = xc, similar 
comments also apply to this quantity. 

CONCLUDING REMARKS 

In this review recent progress concerning dilute liquid non-electrolyte 
solutions as well as results pertaining to liquid mixtures containing a 
strongly polar component have been briefly surveyed. More detailed 
accounts, including experimental and statistical-mechanical aspects, may be 
found in several of the articles quoted above and in refs. 69 and 70. Suffice 
it to say that advances in instrumentation for calorimetry, PUT measure- 
ments and VLE measurements have made possible the determination of 
thermophysical properties and phase equilibria of fluid systems with un- 
paralleled precision, accuracy and speed over large ranges of temperature 
and pressure. The concomitant discovery of hitherto unknown and some- 
times quite spectacular effects has been exciting, and has decisively in- 
fluenced the theoretical advances. 

LIST OF SYMBOLS 

parameter in the one-parameter Redlich-Kister equation 
critical amplitude 
molar heat capacity of a mixture at constant pressure 
excess molar heat capacity 
molar heat capacity of pure i in the perfect-gas state 
partial molar heat capacity of i at infinite dilution in the liquid 
phase 

acz = C,“p” - CP;, heat capacity change upon solution of i 

f fugadity 

fl component fugacity of i in a solution 

$ 
excess molar Gibbs energy 
excess molar enthalpy 

Hz.1 Henry fugacity (solute 2 dissolved in solvent 1) 
Hje molar enthalpy of pure i in the perfect-gas state 
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partial molar enthalpy of i at infinite dilution in the liquid phase 
E HiLoo - Hi*, enthalpy change upon solution of i 

Boltzmann’s constant 
= yj/xi, the K value of i 
= En;, total amount of substance 
amount of substance i 

Avogadro’s constant 
pressure 
vapor pressure of pure i 
gas constant 
thermodynamic temperature 
volume 
molar volume of a mixture 
partial molar volume of i 
Guggenheim’s free energy interchange parameter 
liquid-phase mole fraction 
vapour-phase mole fraction 
lattice coordination number 
= PV/RT, compressibility factor 

Greek letters 

a critical exponent 

Yi liquid-phase activity coefficient 

Z permanent electric dipole moment 

P reduced dipole moment 
E depth of minimum of pair potential energy function 

60 permittivity of vacuum 

P = V-‘, molar density 

;. 

collision diameter at which the pair-wise potential energy is zero 

&= 
fugacity coefficient of i in a solution 
fugacity coefficient of i at infinite dilution in the liquid phase 

Subscripts 

i.j general indexes; usually, i = 1 denotes the solvent and i = 2 denotes 
the solute 

C critical quantity 
S saturation condition 

Superscripts 

E excess 
L liquid phase 
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V vapour phase 
* pure substance 
0 perfect-gas state 
co infinite dilution 
, 

unsymmetric convention 
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